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ABSTRACT17

Despite the abundance of rare genetic variants—variants carried by less than one
percent of the population—in human genomes, the impact of these variants on specific
tissues has been largely uncharacterized. Population-level test statistics, while effective
in understanding the impact of common variants—variants carried by at least five
percent of the population, have had limited success in characterizing the effect of
rare variants mainly due to limited statistical power. In addition, the effect of each
rare variant can vary greatly between specific tissues. This heterogeneity coupled
with limited sample sizes and a lack of known disease-causing rare variants makes
predicting tissue-specific cellular consequences of rare variants a difficult task. To
make these predictions, we propose a new method called SPEER (SPecific tissuE
variant Effect predictoR): a hierarchical Bayesian model that uses transfer learning,
allowing separate predictions in each tissue while flexibly sharing signal across tissues
to improve power. Our probabilistic model capitalizes on a growing body of rich
epigenetic annotations to inform the consequences of a variant in specific tissues.
These annotations are integrated with tissue-specific RNA expression levels and
common variants. We show our method improves prediction accuracy in simulations
and in genomic data from the Genotype-Tissue Expression (GTEx) project.
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INTRODUCTION35

Recent advances in genomic technologies provide us with a unique opportunity to study36

the contribution of genetic variation to disease risk. Genome-wide association studies37

(GWAS) have been largely successful over the past decade in identifying statistical38

associations between common genetic variants—those carried by at least five percent39

of the population, and complex traits and diseases including height, diabetes and heart40

disease. However, these statistical techniques do not generalize well to analyzing rare41

variants—variants carried by less than one percent of the population—due to low sample42

size (Uricchio et al., 2016). Because rare variants have been shown to be implicated43

in disease risk and shown to be potentially more deleterious than common variants44

(Tennessen et al., 2012; Nelson et al., 2012), developing methods that can effectively45

characterize these variants remains essential.46

47

Several tools have been developed to understand the functional consequences of rare48

variants. Kircher et al. (2014) developed CADD, a supervised learning approach that49

used functional annotations of the genome to predict deleteriousness. Quang et al.50

(2015) built on the success of CADD with a deep learning approach also for predicting51

deleteriousness. Li et al. (2016) introduced RIVER, an unsupervised learning method52

that integrates genomic annotations with gene expression data from the same individual53

to prioritize deleterious variants. They showed that genomic annotations are enriched54

for variants nearby genes with extreme expression levels. Building on this knowledge,55

RIVER used gene expression outliers—samples with extreme over or under expres-56

sion—across diverse tissues to prioritize deleterious variants. They were better able to57

identify deleterious variants with global effects compared to models that exclusively58

used genomic annotations.59

60

While these methods have made significant strides in understanding the global impact of61

genetic variants, their usefulness in understanding the tissue-specific consequences of62

genetic variants is somewhat limited. Recent work by Backenroth et al. (2016) integrated63

tissue-specific regulatory elements with GWAS summary statistics in order to understand64

these effects. Despite providing unique insights about the sharing of genetic variants65

within known physiological tissue groups Aguet et al. (2016), these methods do not66

apply to rare variant analysis due to a lack of known pathogenic tissue-specific rare67

variants and a scarcity of samples.68

69

Transfer learning, a framework that allows sharing of knowledge across learning tasks,70

has been shown to be effective in low-resource settings with complex structure (Thrun,71

1996; McCallum et al., 1998). In the hierarchical Bayes framework, parameters for72

each task are dependent on each other through a Bayesian prior (Raina et al., 2006).73

Here we propose SPEER (SPecific tissuE variant Effect predictoR), a hierarchical Bayes74

model that uses transfer learning to predict the tissue-specific functional consequences75

of rare variants. Each task here translates to understanding the effects of rare variants in76

a specific tissue and the sharing across tissues captures global effects. By using transfer77

learning to share information across tissues, SPEER learns reliable parameters and78

prioritizes rare variants in a tissue-specific manner. SPEER has three parts. First, a per-79
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sample component models the effect of both genomic annotations and gene expression80

on the presence of rare regulatory variation. Second, a tissue-specific component models81

the influence of genomic annotations on individual tissues. Third, a global component82

models the shared impact of genomic annotations across tissues.83

84

We apply our method to simulated data and data from the Genotype-Tissue Expression85

(GTEx) project and show that SPEER performs better than state-of-the-art baselines.86

The methods developed in this paper are available at https://github.com/farhand7/speer.87

88

89

3/21



Figure 1. Graphical representation of our model. The outer plate represents tissues,
while the inner plate represents individuals and genes within a tissue. Shaded circles
represent observed variables; white circles represent hidden variables; dotted edged
circles represent hyperparameters.

METHODOLOGY90

SPEER is a probabilistic model for inferring the functional consequences of rare variants91

in M individual tissues. For each tissue c, we have Nc samples, each representing a92

single individual for a single gene. For each sample i within tissue c, X posits that93

the presence of a rare regulatory variant rci can be inferred by integrating measured94

tissue-specific gene expression eci, significant common variants qci nearby sample i, and95

genomic annotations gci describing the rare variants nearby sample i, which is a function96

of both tissue-specific {βc,λc} and shared tissue parameters {α,Λ}. The graphical97

model is shown in Figure 1.98

99

SPEER infers the presence of a rare regulatory variant nearby a sample by optimizing a100

joint objective function. The objective has three components: a global component, a101

tissue-specific component, and a sample-level component.102

103

104
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log p(e,g,r,q,β ,λ ,α,Λ,φ) = log p(α|Λ)︸ ︷︷ ︸
(A) global component

+
M

∑
c=1

(
L

∑
j=1

log p(βc j|α j,λc

)
︸ ︷︷ ︸

(B) tissue-specific component

+
Nc

∑
i=1

log
S

∑
rci

p(eci|rci,qci,φ)p(rci|gci,βc)︸ ︷︷ ︸
(C) per-sample component

(1)

105

Per-sample component. Each individual by gene sample is assumed to belong to one106

of S latent groups (functional variant classes). The random variable rci ∈ {1, . . . ,S}107

encodes functional variant class membership. We infer the membership of each sample108

by integrating genomic annotations, tissue-specific gene expression, and significant109

common variants. gci ∈ RL is a vector of L genomic annotations describing the set of110

rare variants nearby sample i, and βc ∈ RL is a vector of L weights. Formally, we model111

the effects of gci on rci as:112

rci|gci,βc ∼ Bern(ψ)

ψ =
1

1+ e−β T
c gci

We expect functional variants to cause disruption at a cellular level potentially evident by113

individual molecular phenotypes. Similar to Li et al., we hypothesize that extreme gene114

expression levels can inform effects of rare variants even at low frequencies. Therefore,115

we use tissue-specific gene expression outliers denoted by eci ∈ {0,1}, which identifies116

the outlier status of sample i within tissue c. We compute outliers by evaluating whether117

the absolute z-score of a sample’s gene expression is greater than a predefined threshold.118

qci ∈ {0,1} denotes the presence of a significant common variant nearby the gene in119

sample i. Together we model the effects of rci, qci, on eci as:120

eci|rci,qci,φ ∼ NoisyOr(φ)

φ controls the rate of functional rare variants to expression outliers and is the same121

across tissues.122

123

Tissue-specific component. Genomic annotations gci are assumed to inform both124

global and tissue-specific effects of genetic variants. For each tissue c, βc ∈ RL is a125

random variable that deviates from the global effects parameter α ∈ RL with a tissue-126

specific transfer factor λc ∈ R. λc is shared across features. For the jth feature, we127

have:128

βc j|α j,λc ∼N (α j,λ
−1
c )

We exclusively model transferable effects between tissues, not between tissue-specific129

features. This allows our model to scale well with a large number of annotations.130
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131

Global component. The shared tissue level captures global effects across tissues.132

For the jth feature, the global genomic annotations coefficients α j ∈ RL is distributed as133

α j|Λ∼N (~0,Λ−1).134

135

Learning136

We want to learn the parameters of our model Θ = {β11:MG,φ ,α} and our hyperparame-137

ters {λ1:M,Λ}.138

139

We use the empirical Bayes bootstrap estimation procedure described in Efron and140

Tibshirani (1994) to estimate the transfer factors {λ1:M,Λ}. Let δ j,c = β c
j - α j. For i141

= {1,. . . ,K} randomly sampled with replacement datasets, we compute the maximum142

likelihood estimation (with regularization) for βc and α . With these estimates, we143

compute the empirical variance of δ j,c across K datasets:144

λc
−1 =

∑
K
i=1 ∑

L
j=1(β

(i)
c j −α

(i)
j )2

(K−1)L
After estimating our hyperparameters, we compute MAP estimates of Θ by optimizing145

the log of the joint distribution in Eq. (1) with respect to Θ. Because latent variables146

make optimization non-convex, we use expectation maximization (EM) to maximize the147

observed data log likelihood.148

149

Expectation step. We compute the posterior distribution over the set of latent vari-150

ables r by conditioning on the observed data and our model parameters. Assuming each151

sample is i.i.d, compute:152

153

qci(rci) = p(rci = 1|eci,gci,qci,βc,λc,α,Λ,φ) =
p(rci = 1|gci,βc)p(eci|rci = 1,qci,φ)

∑rci p(rci|gci,βc)p(eci|rci,qci,φ)

(2)

Maximization step. The expectation of the complete data log likelihood with respect154

to p(r|...) is:155

156

157

argmax
β 11:ML

,α,φ

log p(α|Λ−1)+
M

∑
c=1

(
L

∑
j=1

log p(βc j|α j,λ
−1
c )

)
+

Nc

∑
i=1

∑
zci

q(rci) log [p(rci|gci,βc)p(eci|rci,qci,φ)]

(3)

We use blocked coordinate gradient descent to estimate βc and α , iterating between158

updating α j =
∑

M
c=1 λcβc j

Λ+∑
M
c=1 λc

and β
t+1
c j = β t

c j −∇ f (β t
c j,α

t
j,qci,gci), where ∇ f = ∂ f

∂β t
c j
=159
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−λc(β
t
c j−α t

j)+∑
Nc
i=1−gci j(qci(rci)−h(βc,gci)) where h is the inverse logit function.160

φ is updated using a NoisyOR MAP estimation procedure with soft assignments to r as161

weights.162
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RESULTS163

Figure 2. Tissue-specific receiver operating characteristic (ROC) curve averaged
across five tissue groups using the stronger effects parameter setting evaluated in the
tied tissue (A) and independent tissue (B) simulations. The darker lines represent
average ROC curves across 75 simulated runs. Area under the curve (AUC) scores are
reported in the legend. There are four benchmarks described here: SPEER w/o transfer
was trained on the same data as SPEER but assumes parameter independence; RIVER
integrates genomic annotations with shared tissue expression outlier status in an
unsupervised setting; shared tissue genome only is a supervised model trained on
exclusively genomic annotations using shared tissue expression outlier status as labels;
tissue-specific genome only is also a supervised model trained on exclusively genomic
annotations using tissue-specific expression outlier status as labels.

Simulation Results.164

To highlight the intuition behind SPEER, we performed two simulations: one involving165

tied tissues and the other involving independent tissues. The tied tissue simulation used166

transfer learning to generate data. The independent tissue simulation generated data167

for each tissue independently. Because none of the other approaches considered here168

include common variants, we excluded q in order to evaluate the usefulness of tissue169

sharing in simulation. Therefore, tissue-specific gene expression is only conditioned170

on r, so we used a categorical distribution with parameter φ to model this dependency171

and used a Beta prior on φ with hyperparameters µrci and σ2
rci

to generate the rate of172

functional variants to expression outliers. Formally, for sample i within tissue c we have:173

eci|rci,φ ∼Cat(φ)

φrci ∼ Beta(µrci ,σ
2
rci
)
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We re-parameterized the Beta distribution using a mean and variance (Ferrari and Cribari-174

Neto, 2004) to allow for better interpretability of the parameter settings described in175

our simulation. The simulations were crafted to mimic scenarios with strong effects176

from genomic annotations coupled with noisy gene expression data. Besides the caveat177

described above, the simulated data for the tied tissue setting was generated by sampling178

from the joint distribution assumed by SPEER, as described in Eq. (1). The independent179

tissue setting followed a similar procedure except each βc j was sampled independently180

from N (0,λc). Tables 1 and 2 describe three scenarios that were tested.

Table 1. Tied tissue simulation.

Parameter stronger effects equal effects weaker effects

Λ 0.01 0.01 0.1
λc {2, . . . , 6} {2, . . . , 6} {2, . . . , 6}

φe|z=0 ∼ Beta(µ,σ2) (0.4, 1e-4) (0.3, 1e-4) (0.4, 1e-4)
φe|z=1 ∼ Beta(µ,σ2) (0.6, 1e-4) (0.7, 1e-4) (0.6, 1e-4)

Table 2. Independent tissue simulation.

Parameter stronger effects equal effects weaker effects

λc 0.01 0.01 0.1
φe|z=0 ∼ Beta(µ,σ2) (0.4, 1e-4) (0.3, 1e-4) (0.4, 1e-4)
φe|z=1 ∼ Beta(µ,σ2) (0.6, 1e-4) (0.7, 1e-4) (0.6, 1e-4)

181

182

For each setting, we measured the simulation uncertainty by performing each experi-183

ment 75 times. The stronger effects scenario underlined strong influence of genomic184

annotations coupled with noisy expression labels. The tied tissue simulation (Table 1)185

highlighted genomic annotations with strong functional effects combined with correlated186

influences across tissues. The independent tissue simulation showed similarly strong187

functional consequences from genomic annotations but independent influences across188

tissues. SPEER performed significantly better than all baselines at predicting held-out189

tissue-specific labels in the tied simulation (Fig. 2A). Even with limited training data,190

SPEER provided a significant performance boost (Fig. 5). In the independent tissue191

simulation, SPEER performed worse than the other two tissue-specific models—SPEER192

without transfer and tissue specific genome only (Fig. 2B). In this simulation, the data193

generation process was independent for each tissue, so encouraging tissue similarity194

would rightly hurt performance.195

196

The equal effects scenario mimicked strong influence of genomic annotations simi-197

lar to the previous simulation but with highly predictive gene expression labels. We198

observed a significant boost in AUC scores across all benchmarks when using expression199

data that is more predictive of regulatory status (Fig. 6A). SPEER scores remained200

highly predictive of the regulatory status of rare variants when switching to expression201

data with a stronger signal (AUC of 0.988 vs 0.955). We observed significant perfor-202

mance boosts in all other models using this parameter setting, implying that highly203
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predictive expression data might be critical to the performance of these other models.204

205

The weaker effects scenario highlights weaker influence of genomic annotations. In the206

tied case, we observed a lower AUC score for SPEER compared to the stronger effects207

scenario (Fig. 7A). Despite a lower AUC score, the predictive performance of SPEER208

remains significantly better than all other models. In the independent tissue simulation209

(Fig. 7B), we predictably observed SPEER without transfer performing better than210

SPEER. Given the weaker influence of genomic annotations, the general performance211

across all models is worse.212

Results from GTEx data.213

We applied our method to data from the Genotype-Tissue Expression (GTEx V6p)214

project. We included whole genome sequence data from 113 donors with European215

ancestry and 5574 RNA-sequence samples from 27 tissues. We defined a rare variant216

using a minor allele frequency (MAF) below 1% within the GTEx cohort and within the217

European panel of the 1000 Genomes project (Consortium, 2015). We restricted our218

analysis to rare single nucleotide variants (SNVs), which are polymorphisms occurring219

at specific positions in the genome. We generated a set of genomic features describing220

each rare SNV. This included describing the location of the rare variant with respect221

to regulatory elements, the conservation status, and summary statistics from genome222

only variant predictor tools including CADD and DANN. We also separately generated223

a set of binary tissue-specific annotations that described whether each rare SNV was224

present in any of the cell-type specific promoter or enhancer regions from ROADMAP225

Epigenomics and ENCODE projects (Consortium, 2012; Kundaje et al., 2015) using226

summary statistics from ChromImpute developed by Ernst and Kellis (2015). We then227

mapped these annotations to one of the 27 GTEx tissues considered here. We then228

aggregated all rare SNVs within 10 kb of the transcription start site (TSS) to generate229

gene-level summary statistics by computing the maximum of each annotation across all230

nearby rare SNVs. Next, we removed technical and environmental confounders from231

each tissue’s gene expression using PEER estimates (Stegle et al., 2012). We then com-232

puted gene expression outliers using the z-score across all subjects and genes for each233

tissue. We refer interested readers to Li et al. (2016) for a complete description of the234

genomic annotations used, the processing of RNA-expression data and the subsequent235

gene expression outlier calls. Finally, we identified the top significant common variant236

nearby each gene using the methods described in Aguet et al. (2016) and used this data237

to denote the presence of a significant common variant for each sample.238

239

We measured the sensitivity of our results to the threshold used to call tissue-specific240

expression outliers in the supplement (Fig. 8). The remaining results used a 1.5 z-score241

threshold. Because single tissue gene expression outliers are too noisy, we identified242

clusters of tissues that shared similar patterns of gene expression. We used five tissue243

groups—brain, digestive, epithelial, artery and fats together, and muscles—as input244

to our model. We used prior experiments to choose tissue groups by evaluating the245

pairwise-similarity between individual tissues. A list of tissues in each tissue group is246

available in the supplement.247

248
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Allele-specific expression is known to present strong evidence of a causal cis-regulatory249

effect, which often arises from a non-coding variant (Zhang et al., 2009; Yan et al., 2002).250

Because the majority of the rare variants in GTEx are non-coding and heterozygous,251

measuring tissue-specific allele-specific expression allowed us to evaluate SPEER at252

prioritizing functional variants. We measured allelic imbalance as a function of reference253

and alternate allele expression read counts, which is computed using an allelic ratio =254

| re f
re f−alt |−0.5. Higher values here imply greater allelic imbalance.255

256

We computed the statistical association between SPEER’s predictions and measured257

tissue-specific allelic imbalance for all genes in each tissue using Fisher’s Exact Test258

and observed significantly greater predictive power using SPEER compared to all bench-259

marks (Fig. 3A). We also measured the effect for each tissue individually (Fig. 9). In260

addition, we investigated the SPEER posteriors for samples with strong allelic imbal-261

ance (defined using 90 percentile cut-off) and limited to at least one model having a262

posterior greater than 0.5 (Fig. 3B). Among samples with observed allelic imbalance,263

SPEER identified 120 samples with all predictions greater than 0.85. Genome only264

tissue-specific model identified 3 samples; and the shared tissue genome only model265

identified 2 samples.

Figure 3. A) Using SPEER scores to predict tissue-specific allelic imbalance. Allelic
imbalance was defined by the 90th percentile of allelic ratios. A deleterious SPEER
score was defined using four percentile thresholds. We computed p-values for each of
the four settings using Fisher’s exact test and compared our results to two benchmarks.
B) Histogram of SPEER scores for samples with allelic imbalance limited to samples
with at least one of the four models having a posterior greater than 0.5.

266

267

Comparing SPEER to RIVER.268

SPEER is a probabilistic model that uses transfer learning to infer the tissue-specific269

regulatory impact of each rare SNV. RIVER is a general method to infer the global270

regulatory impact of each rare SNV across diverse tissues. SPEER integrates genomic271

annotations with tissue-specific expression labels across M tissues. RIVER integrates272

genomic annotations with a shared tissue expression label. We compared the two273
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Figure 4. ROC curve comparing predictive performance of SPEER to RIVER on their
respective tasks (predicting tissue-specific expression labels versus shared tissue
expression labels respectively) using held-out pairs of individuals with identical variants
nearby a specific gene.

methods at their respective tasks, predicting tissue-specific held-out expression labels274

and shared tissue held-out expression labels (Fig. 4). For evaluation, we followed a275

similar approach to Li et al. (2016) by holding out pairs of individuals that share the276

same rare variants nearby a specific gene. After training SPEER and RIVER on the277

remaining data, we computed SPEER and RIVER scores for the first individual and278

compared these scores to the held-out expression labels for the second individual. We279

observed significant performance boosts at predicting held-out shared tissue expression280

labels using RIVER compared to held-out tissue-specific expression labels using SPEER.281

These results show that tissue-specific expression labels are noisier and simply harder282

to predict. We investigated this further by computing the correlation between the gene283

expression labels across all pairs of individuals with the same rare variants. We observed284

a 5x increase in correlation when using shared tissue expression labels (Kendall’s tau285

rank correlation, ρ = 0.144, p-value < 1.33-124) instead of tissue-specific expression286

labels (ρ = 0.033, p-value < 3.27e-12).287
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CONCLUSION.288

Rare variant prediction is an important problem for understanding the heritability of a289

large number of diseases. Understanding the functional consequences of these variants290

is a critical hurdle in our efforts towards personalized genomics. Because most diseases291

are known to have tissue-specific molecular consequences, the development of variant292

prediction tools that use tissue and cell-type specific context remain essential. Here we293

have developed a probabilistic model that provides tissue-specific functional predictions294

for rare variants. Our method shares information across tissues in order to make reliable295

predictions.296

297

Using our method, we observe significant performance boosts in predicting tissue-298

specific allele-specific expression compared to the state-of-the-art, including genome299

only prediction tools such as CADD and VEP and integrative methods like RIVER.300

We also highlight the model’s predictive power using simulated data. The simulation301

highlights SPEER’s particular usefulness with low resources across diverse tissues.302

303

A future direction for this work is to leverage the information sharing across tissues304

in order to make single tissue functional predictions. This will be a necessary step305

forward given the large number of datasets with limited resources. However, predicting306

the molecular consequences in single tissues remains a difficult problem for learning307

reliable parameters and evaluating model performance due to noisy transcriptomic reads.308

309

The primary application of SPEER described here involves the use of tissue-specific310

gene expression. However, this method may also be useful for predicting alternative311

splicing using isoform ratios or allelic imbalance using allele-specific expression by312

direct integration of these data sources.313

314
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Data availability The GTEx V6 release genotypes and allele-specific expression315

data are available on dbGaP (study accession phs000424.v6.p1; http://www.ncbi.316

nlm.nih.gov/projects/gap/cgi-574bin/study.cgi?study_id=phs000424.317

v6.p1). GTEx V6p release expression data is available on the GTEx portal (http:318

//www.gtexportal.org319
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SUPPLEMENT.387

Tissue groups. We evaluated the pairwise similarity between gene expression patterns388

across tissues and identified the following list of tissue groups used in the GTEx results389

section. GTEx ids are listed below:390

Brain Brain Caudate basal ganglia, Brain Nucleus accumbens basal ganglia, Brain391

Putamen basal ganglia, Brain Anterior cingulate cortex BA24, Brain Cortex, Brain392

Frontal Cortex BA9393

Artery and Fat Artery Coronary, Artery Aorta, Artery Tibial, Esophagus Muscularis,394

Esophagus Gastroesophageal Junction, Colon Sigmoid, Adipose Subcutaneous,395

Adipose Visceral Omentum, Breast Mammary Tissue396

Muscle Muscle Skeletal, Heart Atrial Appendage, Heart Left Ventricle397

Epithelial Skin Not Sun Exposed Suprapubic, Skin Sun Exposed Lower leg, Esophagus398

Mucosa, Vagina399

Digestive Stomach, Colon Transverse, Lung, Thyroid, Prostate400
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Figure 5. Area under curve (AUC) averaged across five tissue groups for different
number of training samples using simulated data.
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Figure 6. ROC curves for equal effects setting comparing SPEER to four benchmarks
in the tied tissue simulation (left) and the independent tissue simulation (right).

Figure 7. ROC curves for weaker effects setting comparing SPEER to four
benchmarks in the tied tissue simulation (left) and the independent tissue simulation
(right).
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Figure 8. SPEER scores compared to tissue-specific allelic imbalance using z-score
expression outlier thresholds of 1.75 (left) and 2.0 (right) in GTEx data.

20/21



Figure 9. SPEER scores compared to allelic imbalance in the five tissue groups using
GTEx data.
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