Predicting tissue-specific effects of rare genetic variants TGGGACACCG Farhan Damani, GCAAA CACTTG

GAGATA GGCGAAT

GGGCCGGG

TACAGAGTT

CGTCCGGGGCCC

GTGAGCCTGTTCG

GTCGTCTCGGGGCC

CAGATAATAGCCCCGTCCGGGG

TAAATATCATAACGTGACCCTC

TGCAG CGTCGCA CGCAGGA

Biological Data Sciences 2016

CTATATAAGCGCGTGGGGGGGGCTCTTCCCCT

INGGGAC

TGTAGGCCTTAGTA

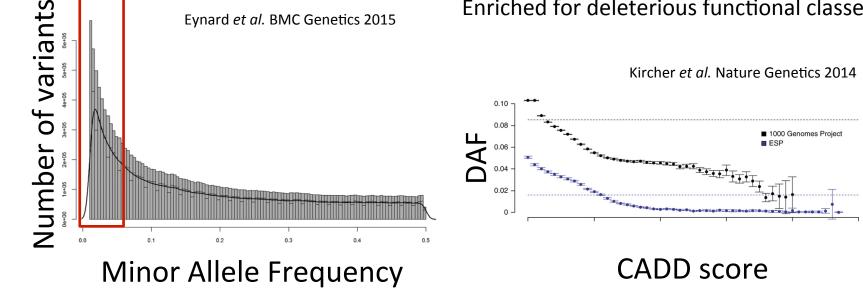
Goal: develop a framework to predict tissuespecific regulatory effects of rare variants

Rare variants are abundant and potentially high-impact

Eynard et al. BMC Genetics 2015

Rare variants defined with minor allele frequency < 1%

Enriched for deleterious functional classes



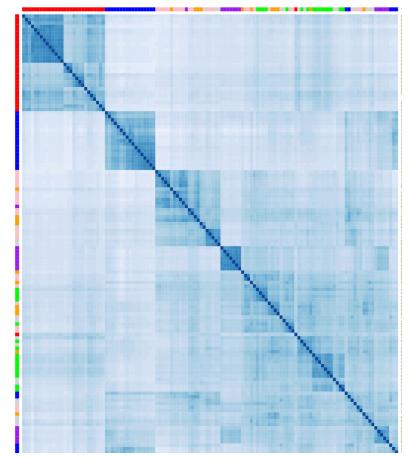
Tissue-specific functionality

Tissue type

 Understanding tissue-specific consequences of noncoding genetic variation is critical to understanding complex traits

Overlap of functional common variants

Backenroth et al. Biorxiv 2016



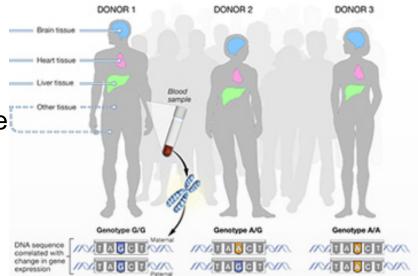
Cell type

Challenges

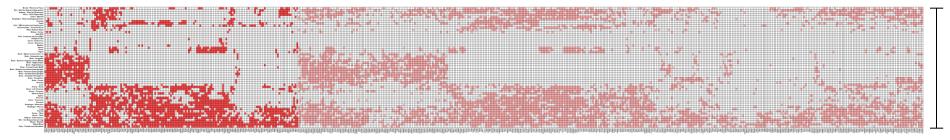
- Even fewer reliable labels in tissue-specific setting
- Each individual tissue has low sample size (RNA-seq)
- Limited samples for each rare SNV

GTEx Project Data

- WGS from 148 donors
 - 114 European Ancestry used here
- 8555 RNA-seq samples from
 - <u>44 tissues</u> from 522 donors



44 tissues



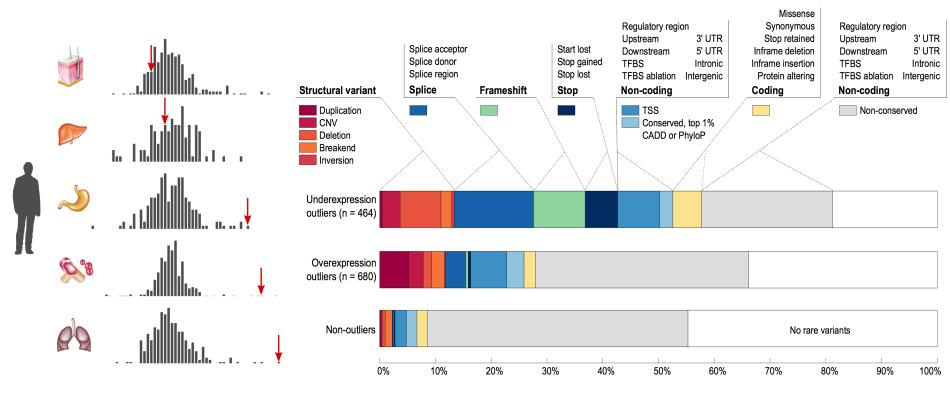
148 individuals (WGS)

522 individuals (RNA-seq samples)

Expression outliers

What are expression outliers?

Enrichment of functional variants among outliers



Li et al. The impact of rare variation. Biorxiv http:// biorxiv.org/content/early/2016/09/09/074443

Genomic features

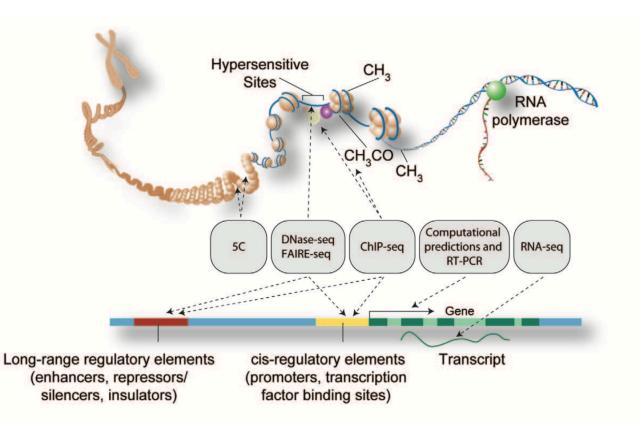
(1) regulatory elements

(2) variant predictor summary statistics

- Variant effect predictor
- CADD
- DANN
- ...

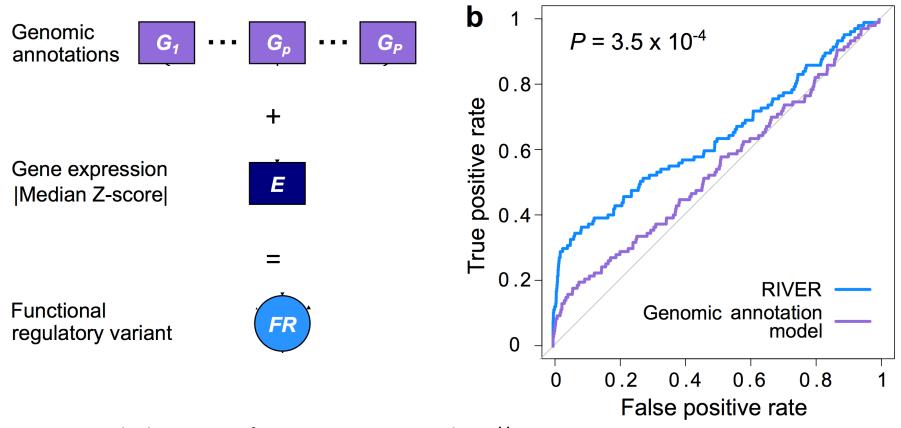
Genomic features

ENCODE Project Consortium. Plos Biology 2011.



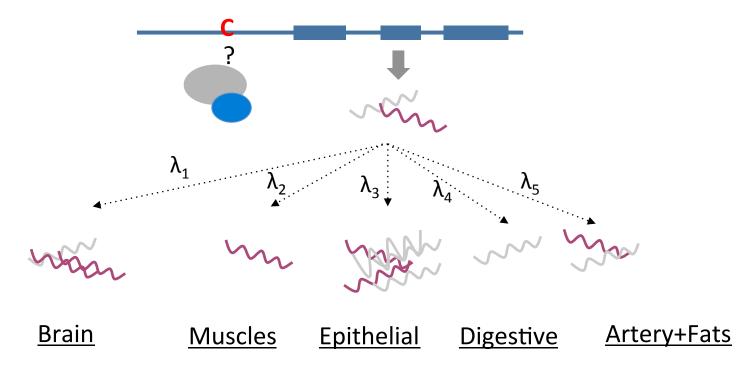
- <u>Tissue-specific</u> promoters/ enhancers
- Conservation scores
- Transcription factor binding sites
- CpG sites
- ChromHMM

Related work on tissue-shared effects

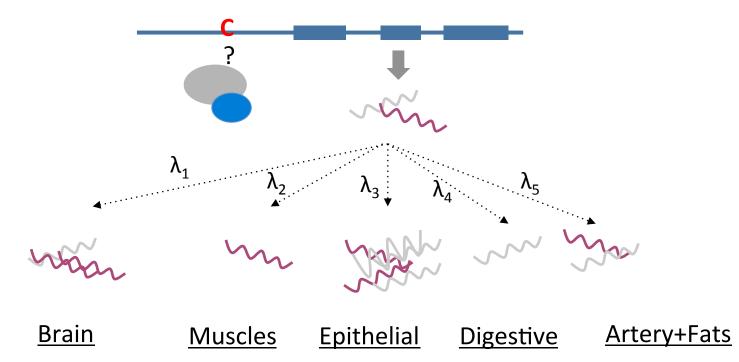


Li et al. The impact of rare variation. Biorxiv http:// biorxiv.org/content/early/2016/09/09/074443

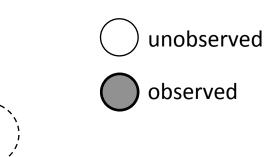
Learning tissue-specific effects as individual tasks



Learning tissue-specific effects as individual tasks



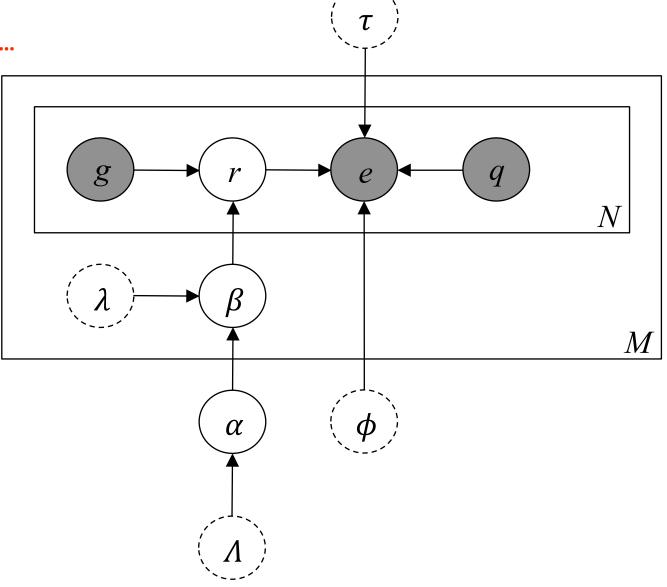
Expression outliers are noisier based on smaller sets of tissues

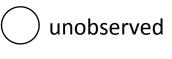


Graphical model

Boxes represent replicates...

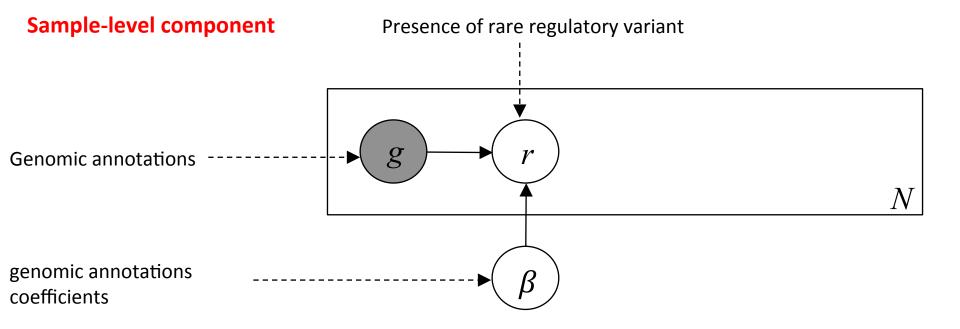
- M tissues
- N individual by gene samples





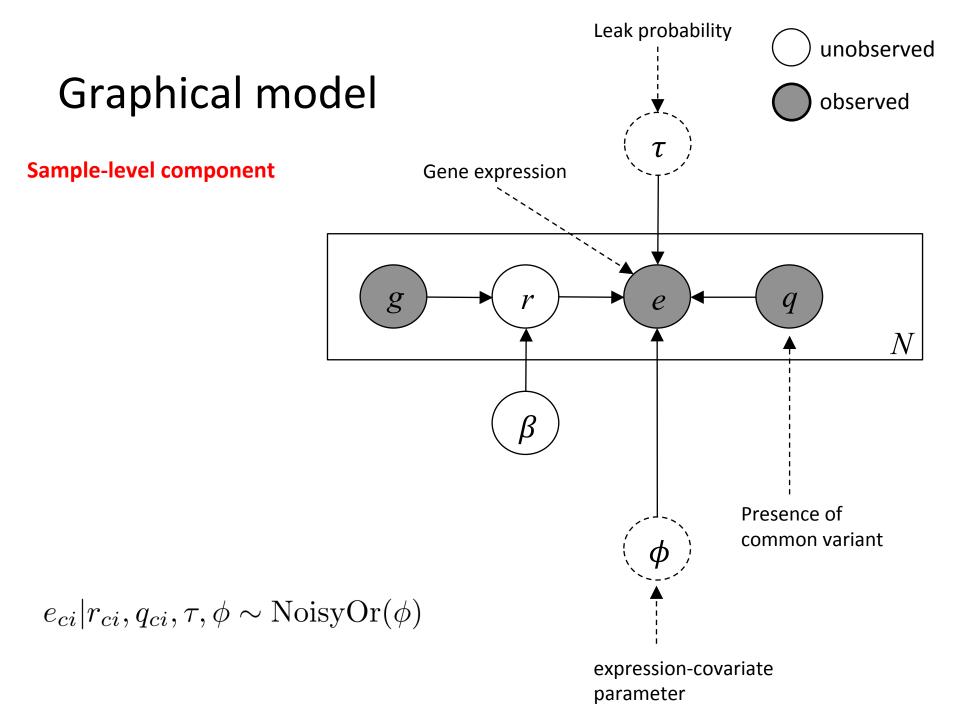
observed

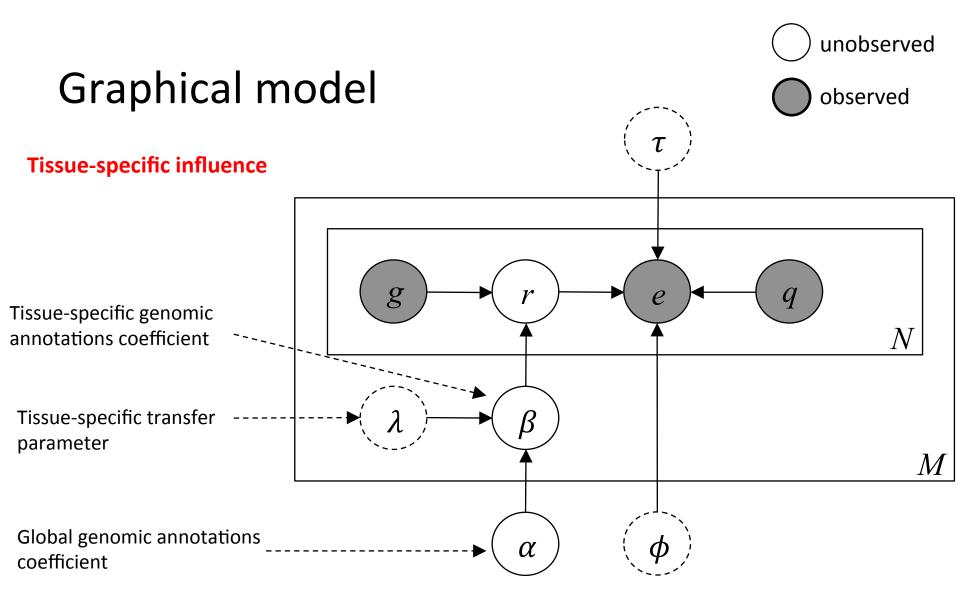
Graphical model



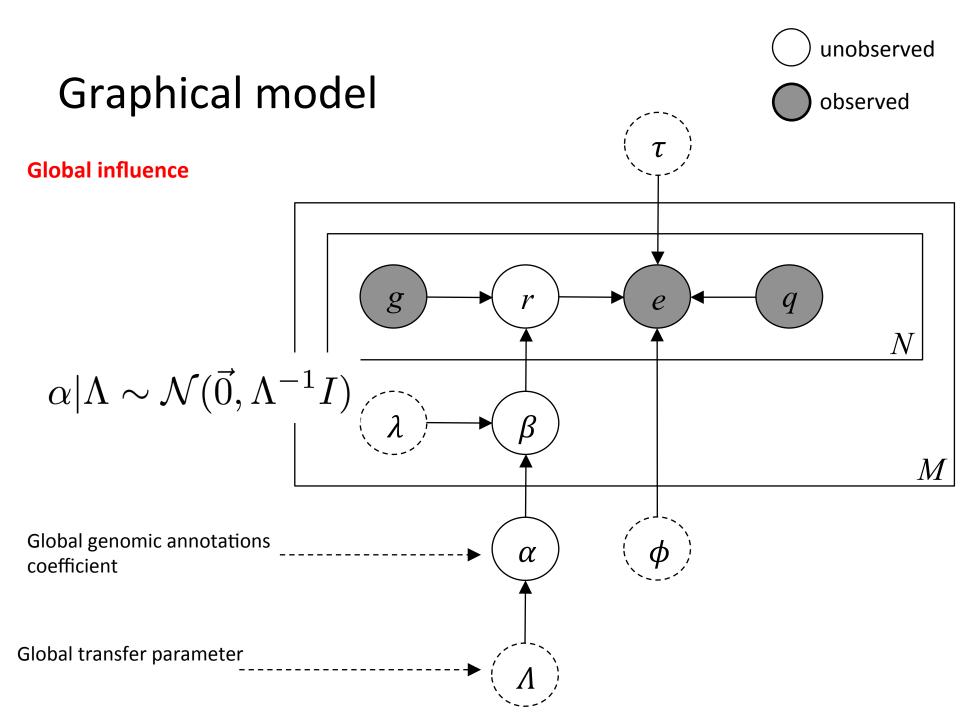
 $r_{ci}|g_{ci},\beta_c \sim Bernoulli(logit^{-1}(g_{ci}))$

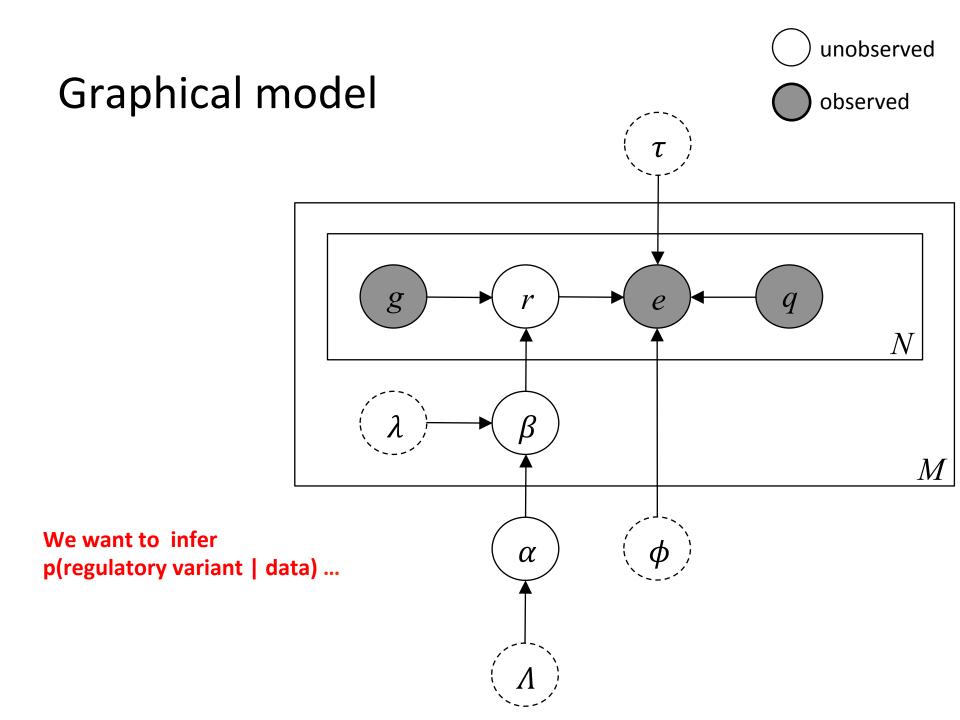
$$\psi(g_{ci}) = \frac{1}{1 + e^{-\beta_c^T g_{ci}}}$$





 $\beta_{cj} | \alpha_j, \lambda_c \sim \mathcal{N}(\alpha_j, \lambda_c^{-1})$





Objective function

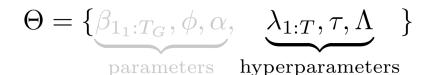
$$\log p(\boldsymbol{e}, \boldsymbol{g}, \boldsymbol{r}, \boldsymbol{q}, \boldsymbol{\beta}, \boldsymbol{\lambda}, \boldsymbol{\tau}, \boldsymbol{\alpha}, \boldsymbol{\Lambda}, \boldsymbol{\phi}) = \underbrace{\log p(\boldsymbol{\alpha} | \boldsymbol{\Lambda})}_{\text{(A) global influence}} + \underbrace{\sum_{c=1}^{M} \left(\sum_{j=1}^{L} \log p(\beta_{cj} | \boldsymbol{\alpha}_j, \boldsymbol{\lambda}_c) \right)}_{\text{(B) tissue-specific influence}} + \underbrace{\sum_{i=1}^{N_c} \log \sum_{r_{ci}} p(e_{ci} | r_{ci}, q_{ci}, \tau_c, \boldsymbol{\phi}) p(r_{ci} | g_{ci}, \beta_c)}_{\text{(C) sample-level component}}$$

Objective function

$$\log p(\boldsymbol{e}, \boldsymbol{g}, \boldsymbol{r}, \boldsymbol{q}, \boldsymbol{\beta}, \boldsymbol{\lambda}, \boldsymbol{\tau}, \boldsymbol{\alpha}, \boldsymbol{\Lambda}, \boldsymbol{\phi}) = \underbrace{\log p(\boldsymbol{\alpha} | \boldsymbol{\Lambda})}_{\text{(A) global influence}} + \underbrace{\sum_{c=1}^{M} \left(\sum_{j=1}^{L} \log p(\beta_{cj} | \boldsymbol{\alpha}_j, \boldsymbol{\lambda}_c) \right)}_{\text{(B) tissue-specific influence}} + \underbrace{\sum_{i=1}^{N_c} \log \sum_{r_{ci}} p(e_{ci} | r_{ci}, q_{ci}, \tau_c, \boldsymbol{\phi}) p(r_{ci} | g_{ci}, \beta_c)}_{\text{(C) sample-level component}}$$

parameters hyperparameters

Hyperparameter setting



• $\{\lambda_{1:T}, \Lambda\}$ (transfer parameters) Bootstrap estimation: $\lambda_c^{-1} = \sigma_c^2 = \frac{\sum_{i=1}^K \sum_{j=1}^L (\beta_{cj}^{(i)} - \alpha_j^{(i)})^2}{(K-1)L}$ • $\{\mathcal{T}\}$ (leak probability)

Categorical distribution

Optimizing the objective using EM

 $\Theta = \{ \underbrace{\beta_{1_1:T_G}, \phi, \alpha}_{\lambda_{1:T}, \tau, \Lambda} \}$ parameters hyperparameters

- Expectation step
 - Exact inference q

$$q_{ci}(r_{ci}) = p(r_{ci}|\text{data},\Theta)$$

• Maximization Step

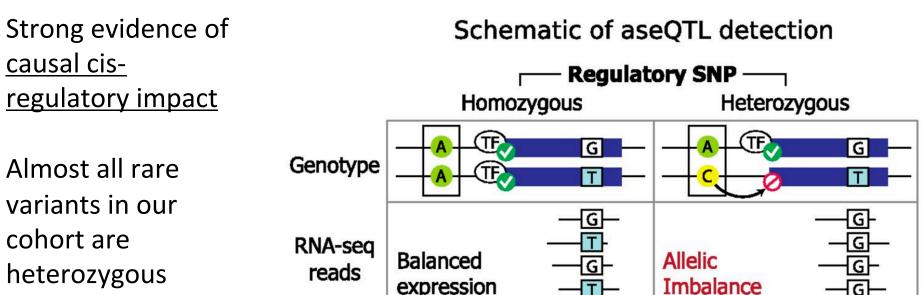
Coordinate gradient descent
$$\begin{cases} \alpha_j = \frac{\sum_{c=1}^M \lambda_c \beta_{cj}}{\Lambda + \sum_{c=1}^M \lambda_c} \\ \beta_{cj}^{t+1} = \beta_{cj}^t - \nabla f(\beta_{cj}^t, \alpha_j^t, q_{ci}, g_{ci}) \end{cases}$$

NoisyOr update

Results

Allelic imbalance presents strong evidence for regulatory variation

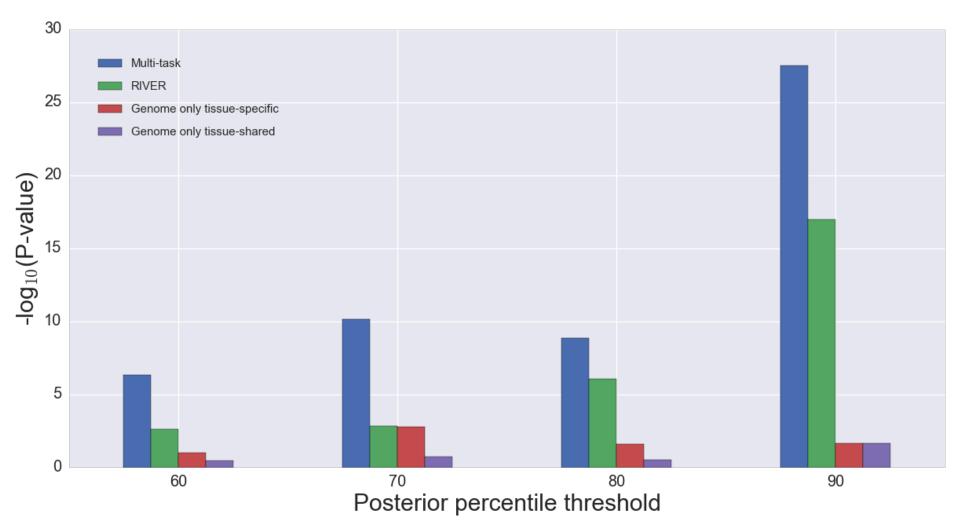
Battle et al. Genome Research 2013

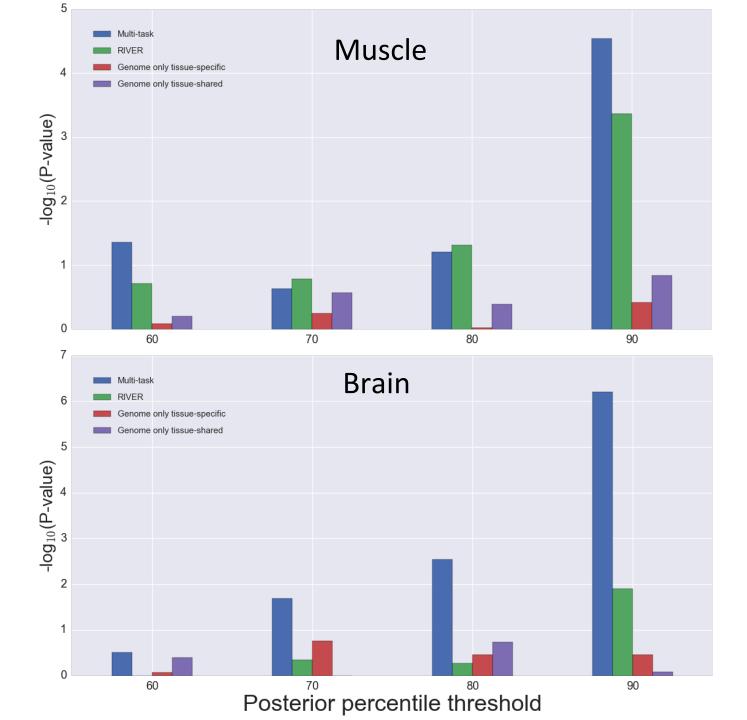


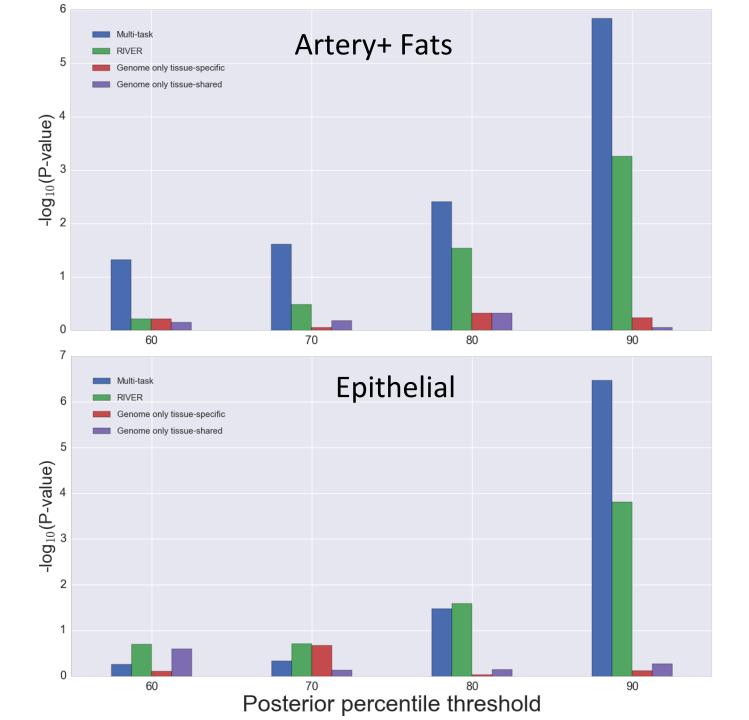
Zhang et al. Nature Methods 2009: "we found that the variation of allelic ratios in gene expression among different cell lines was primarily explained by genetic variations..."

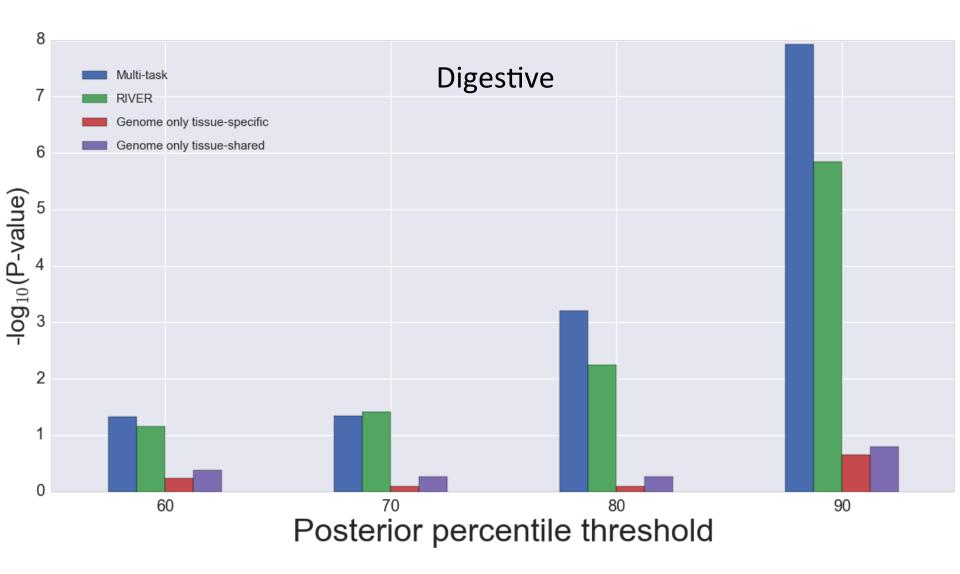
Yan et. al. Science 2002: "We estimated that this approach could confidently identify variations when the differences between expression of the two alleles differed by more than 20%."

Posteriors are predictive of allelic imbalance

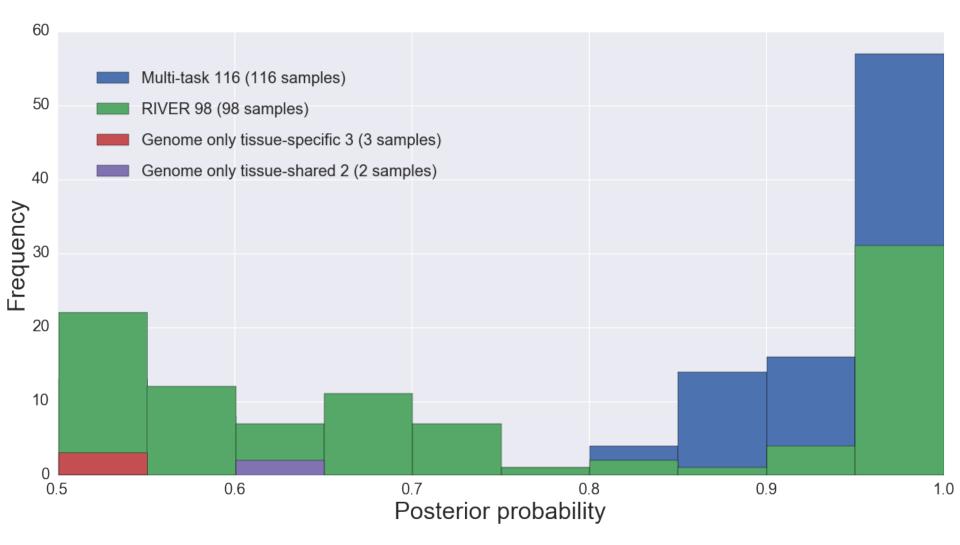




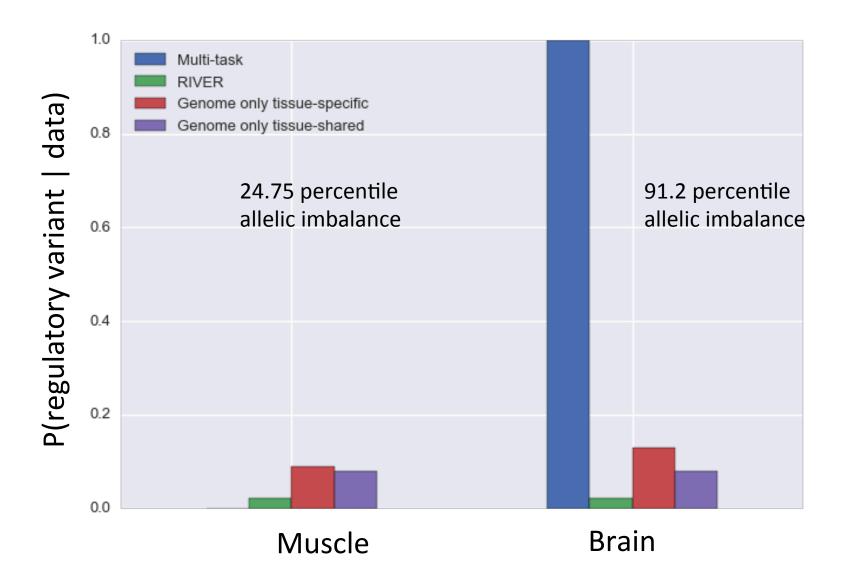




Our predictions are also confident



Rare regulatory variant nearby GCAT



Conclusion

We developed a framework for regulatory rare variant prediction

We compared our predictions to measured allelic imbalance

Presents an opportunity for researchers with WGS and (limited) RNA-seq to reliably identify functional rare variants

Thank you!

CIA

TATATAAGCGCGTGGGGGGGGTCT

GCCTCGGAGTGCTCTAAACCC

ATGGGACACCGGACCA

Battle Lab

Yungil Kim **Ben Strober Alexis Battle**

Montgomery Lab Xin Li Joe Davis **Emily Tsang** Zachary Zappala **Stephen Montgomery**

GTEx Consortium **Pistritto Fellowship** SGNH NIMH Searle Scholar Program

71

CGTCC

TGTT

71

IA

ATATCATAACGTGAGCC

TGCGCT

GI

71

71 AGAC

GGGG

G

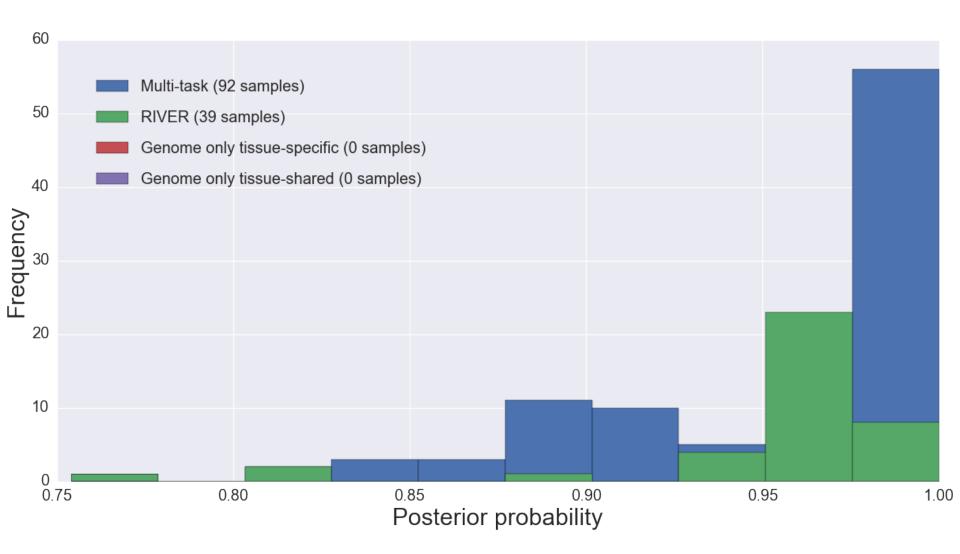
677

IGA

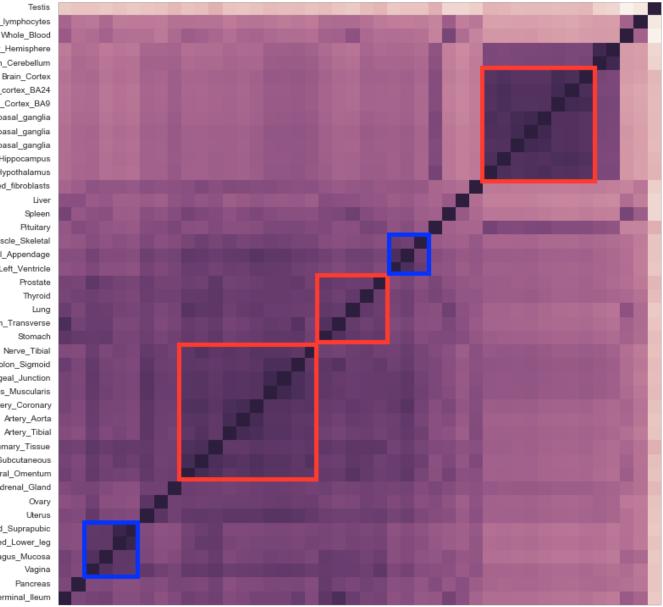
GA

GG

7

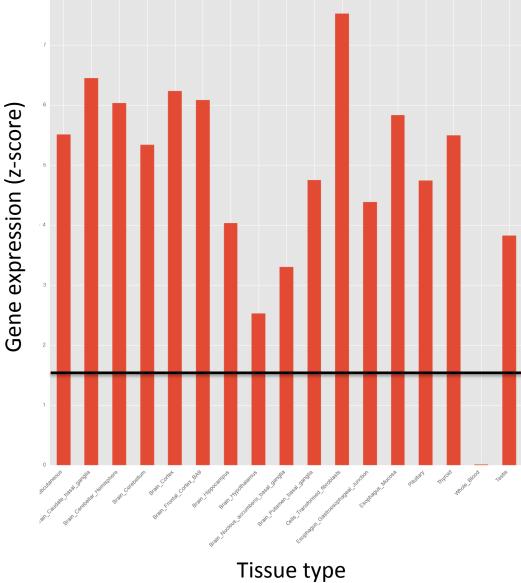


Tissue groups with similar behavior

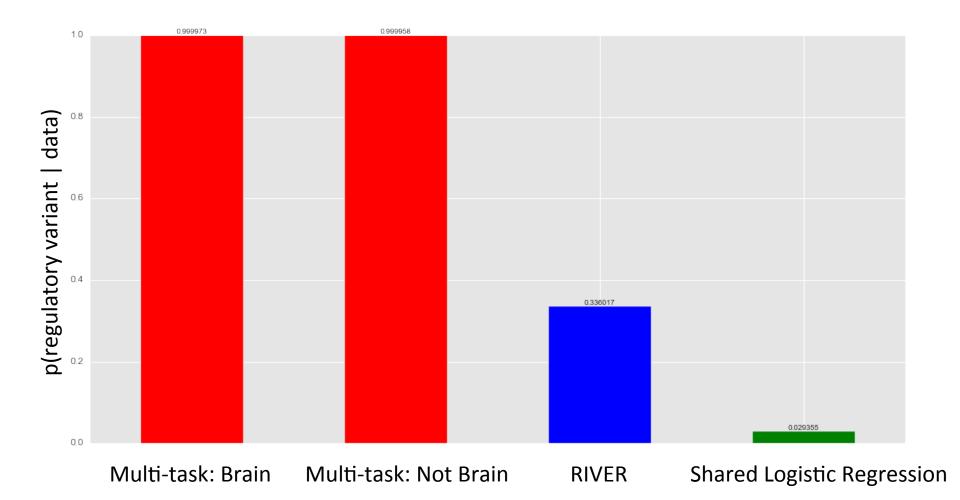


Cells_EBV-transformed_lymphocytes Whole Blood Brain_Cerebellar_Hemisphere Brain_Cerebellum Brain_Anterior_cingulate_cortex_BA24 Brain_Frontal_Cortex_BA9 Brain_Nucleus_accumbens_basal_ganglia Brain_Caudate_basal_ganglia Brain_Putamen_basal_ganglia Brain_Hippocampus Brain_Hypothalamus Cells Transformed fibroblasts Muscle Skeletal Heart_Atrial_Appendage Heart_Left_Ventricle Colon_Transverse Colon_Sigmoid Esophagus_Gastroesophageal_Junction Esophagus_Muscularis Artery_Coronary Breast_Mammary_Tissue Adipose_Subcutaneous Adipose Visceral Omentum Adrenal_Gland Skin_Not_Sun_Exposed_Suprapubic Skin_Sun_Exposed_Lower_leg Esophagus_Mucosa Small_Intestine_Terminal_Ileum

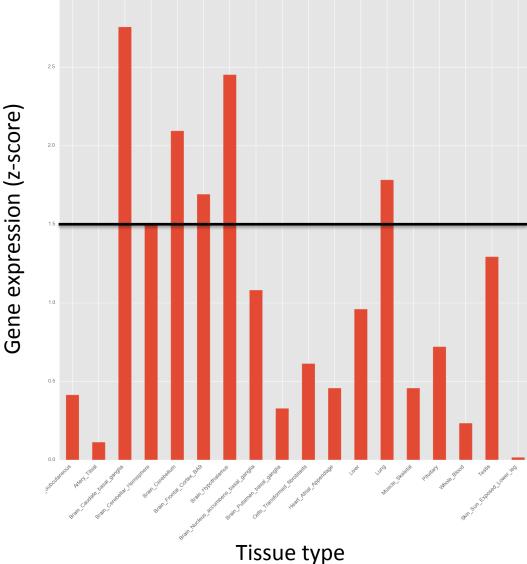
Case 1: Extreme expression across tissues



Model predictions



Case 2: Extreme expression in brain tissues



Model predictions

